LightningFilter: Traffic Filtering at 100 Gbps

Presented by: Benjamin Rothenberger

In collaboration with:

ETH zürich

Prof. Adrian Perrig, Juan Garcìa Pardo, Dominik Roos, Jonas Gude, Pascal Sprenger, Florian Jacky

Project Goals

- High-speed packet processing requires nanosecond operations
 - Example: 64-byte packets @ 100Gbps: ~5ns processing time
- Nanosecond scale key establishment
- Nanosecond scale packet authentication
- Trivia: how "long" is a nanosecond?
 - Answer: light travels about 30cm in 1ns

ETH zürich

Use Case: Network Error Message Authentication

- Novel protocol based on symmetric cryptography
- Intel AES-NI instructions enable key derivation within ~50 cycles
 → Nanosecond scale!
- Key computation is up to **3 times** faster than DRAM lookup!
 → Computing the key is faster than storing it in memory!

 \rightarrow Foundation for many DDOS defense mechanisms

DRKey Performance

.

./fast-signing-eval

Authentication / Signing times averaged over 100000 runs: DRKey: 84.8 ns Ed25519: 125.5 μs Factor: ~ 1450x

Lightning Filter

Traffic Filtering at 100 Gbps

Overview

ETH zürich

\$\$\$

SC[°]ON

Demo Outline

- 1. Attack scenario
 - Attacker located anywhere in Internet \rightarrow Source authentication
- 2. Bandwidth capacity
 - 120 Gbps traffic volumne
- 3. Filtering based on source authentication
 - Alternate between filtering and bypass every 30s
- 4. Duplicate suppression
 - 80 Gbps duplicates traffic, 40 Gbps legitimate traffic

ETH zürich

Attack Scenario: Internet Attacker

Attack Scenario: Internet Attacker

Questions?

Backup Slides

DRKey Scenario

- Communication between clients and server is *authenticated* using DRKey
- Key derivation for L2 keys is delegated to server

SC 11

DRKey Exchange Demo

- Client requests the L2 key to communicate to the server from its local CS
- 2. L1 key has not been prefetched \rightarrow L1 key exchange
- 3. Server fetches the derivation secret for its delegation from CS

 $S(\exists () | \mathbf{N})$

- 4. Server then derives the same L2 key locally
- 5. Do 100 runs and calculate average execution time

DRKey Hierarchy

- Key establishment using a multi-level key hierarchy
- L0: per-AS local secret key & per-AS public/private key pair

- L1: AS-level key establishment (typically prefetched!)
- L2: *locally* derive symmetric keys for end hosts

DRKey Key Exchange

ETH zürich

Key Rollover

